

The Oridnary Least Squares Estimators

Suppose Y_i are continuous and we want to model $E[Y_i|X_i]$.

A linear regression models takes

$$E[Y_i|X_i] = X_i\beta.$$

We take

$$\widehat{\beta} = (X'X)^{-1}X'Y,$$

and call these ordinary least squares (OLS) estimators.

OLS Estimators (Two Ways)

If $Y_i|X_i \sim N(X_i\beta, \sigma^2)$, then the OLS estimators are the **maximum likelihood** estimators.

If we take $Y_i = X_i\beta + \epsilon_i$, where ϵ_i is non-normal, then the OLS estimators are simply the best (in terms of *mean squared error*) predictor of β .

Assumptions for OLS

- 1. The conditional mean is **linear** (in parameters).
- 2. All values of Y_i have **constant variance**, denoted σ^2 (conditionally).
- 3. The Y_i are independent.

Asymptotic Analysis

As $n \to \infty$, $\widehat{\beta} \stackrel{.}{\sim} N(\beta, \text{var}(\widehat{\beta}))$, where

$$\operatorname{var}(\widehat{\beta}) = \sigma^2(X'X)^{-1}.$$

We can use this result for confidence intervals and hypothesis tests.

Summary

- ▶ Linear Regression allows us to estimate a functional form for the conditional mean of a continuous outcome.
- ► The OLS estimators are valid MLE-type estimators when normality is assumed, and are LS estimators otherwise.
- ► The asymptotic analysis is valid in large samples, regardless of distributional assumptions, and can be used for Wald-type analysis.